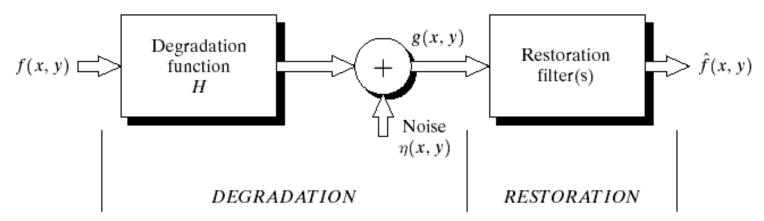
Digital Image Processing UNIT 5: Image Restoration

Concept of Image Restoration

Image restoration is to restore a degraded image back to the original image while image enhancement is to manipulate the image so that it is suitable for a specific application.



Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$

where h(x,y) is a system that causes image distortion and $\eta(x,y)$ is noise.

Noise Models

Noise cannot be predicted but can be approximately described in statistical way using the probability density function (PDF)

Gaussian noise:

$$p(z) = \frac{1}{2\pi\sigma} e^{-(z-\mu)^2/2\sigma^2}$$

Rayleigh noise

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b} & \text{for } z \ge a\\ 0 & \text{for } z < a \end{cases}$$

Erlang (Gamma) noise

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} (z-a)e^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

Noise Models (cont.)

Exponential noise

$$p(z) = ae^{-az}$$

Uniform noise

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{for } a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

Impulse (salt & pepper) noise

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

PDF: Statistical Way to Describe Noise

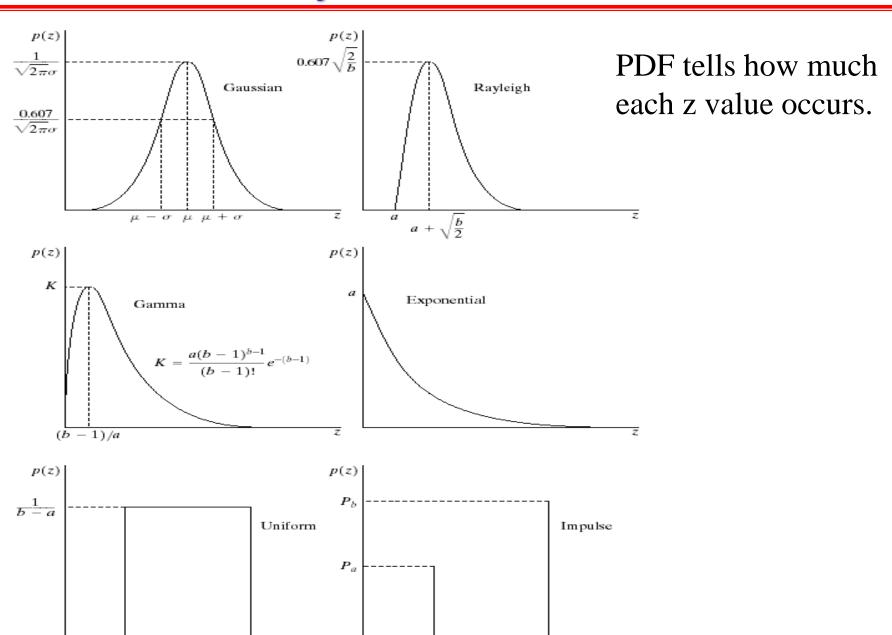
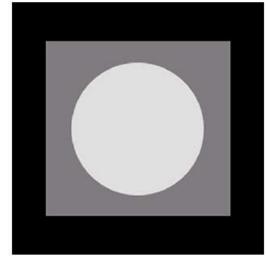


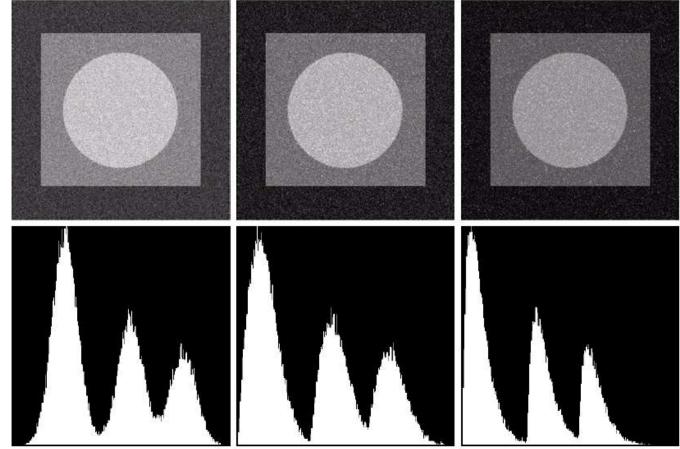
Image Degradation with Additive Noise



Original image

$g(x, y) = f(x, y) + \eta(x, y)$

Degraded images



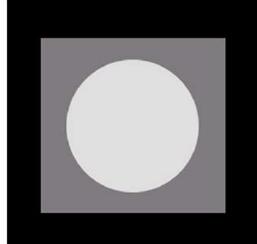
Histogram

Gaussian

Rayleigh

Gamma

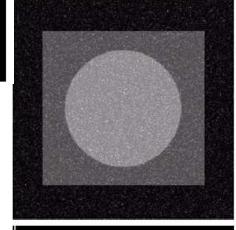
Image Degradation with Additive Noise (cont.)

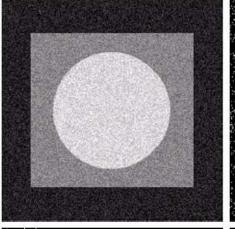


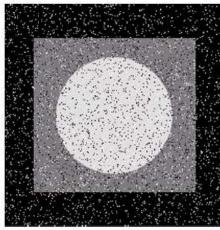
Original image

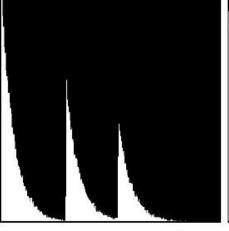
 $g(x, y) = f(x, y) + \eta(x, y)$

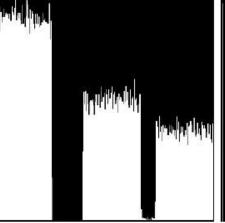
Degraded images

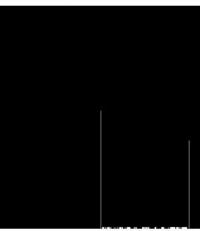












Exponential

Uniform

Salt & Pepper

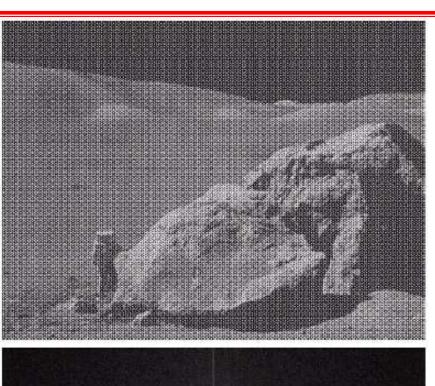
Periodic Noise

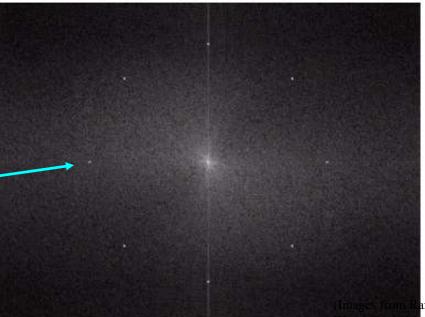
a

FIGURE 5.5

(a) Image corrupted by sinusoidal noise. (b) Spectrum (each pair of conjugate impulses corresponds to one sine wave). (Original image courtesy of NASA.)

Periodic noise looks like dots
In the frequency domain

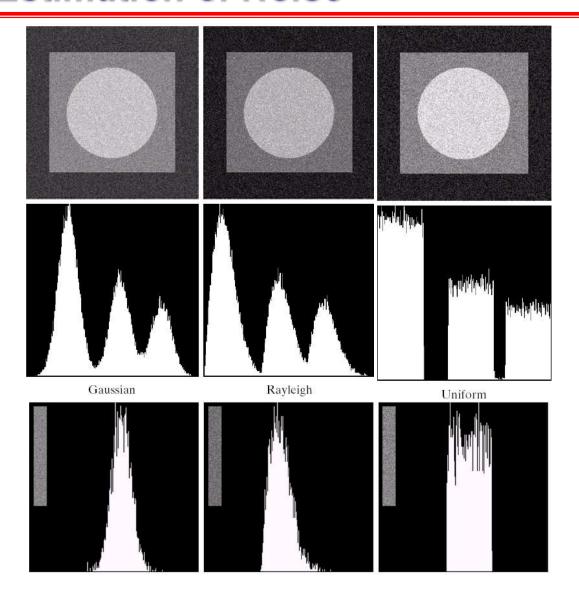




afael C. Gonzalez and Richard E.

Wood, Digital Image Processing, 2nd Edition.

Estimation of Noise



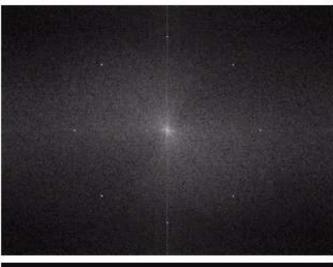
We cannot use the image histogram to estimate noise PDF.

It is better to use the histogram of one area of an image that has constant intensity to estimate noise PDF.

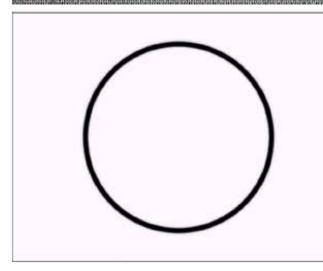
Periodic Noise Reduction by Freq. Domain Filtering

Degraded image

DFT



Periodic noise can be reduced by setting frequency components corresponding to noise to zero.



Band reject filter

Restored image

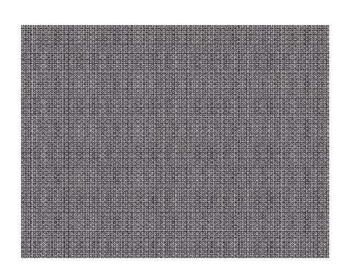
Band Reject Filters

Use to eliminate frequency components in some bands

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject filters.

FIGURE 5.17

Noise pattern of the image in Fig. 5.16(a) obtained by bandpass filtering.



Periodic noise from the previous slide that is Filtered out.

Notch Reject Filters

A notch reject filter is used to eliminate some frequency components.

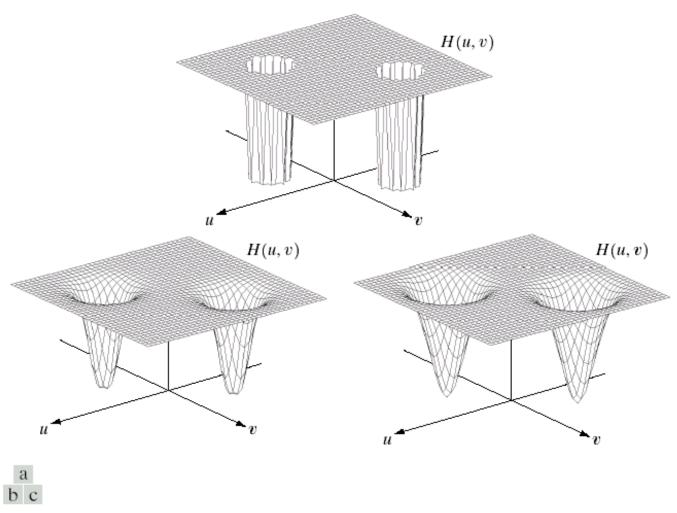
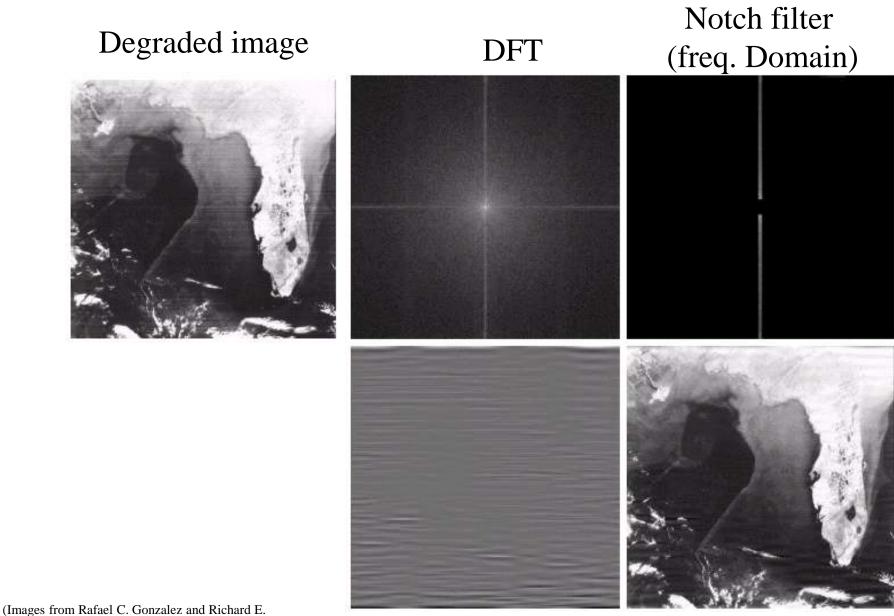


FIGURE 5.18 Perspective plots of (a) ideal, (b) Butterworth (of order 2), and (c) Gaussian notch (reject) filters.

Notch Reject Filter:



Noise

Restored image

Example: Image Degraded by Periodic Noise

Degraded image

a b

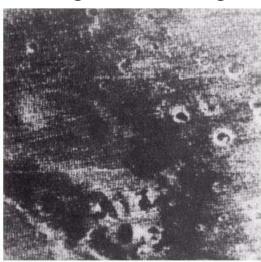
FIGURE 5.20

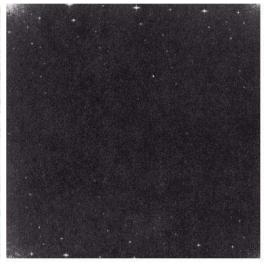
(a) Image of the Martian terrain taken by Mariner 6.

(b) Fourier spectrum showing

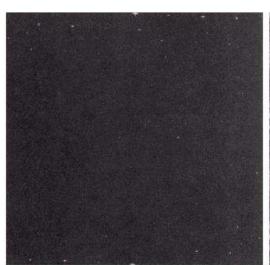
periodic interference.

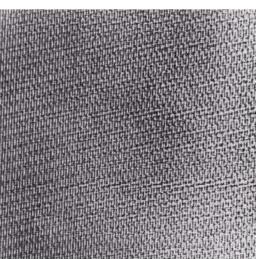
(Courtesy of NASA.)





DFT (no shift)





DFT of noise

Noise

Restored image
(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Mean Filters

Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$
To remove this part

Arithmetic mean filter or moving average filter (from Chapter 3)

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

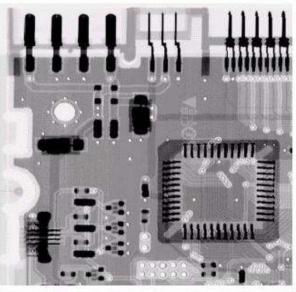
Geometric mean filter

mn = size of moving window

$$\hat{f}(x,y) = \left(\prod_{(s,t)\in S_{xy}} g(s,t)\right)^{\frac{1}{mn}}$$

Geometric Mean Filter: Example

Original image



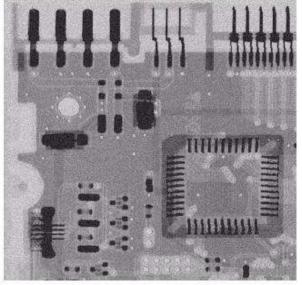
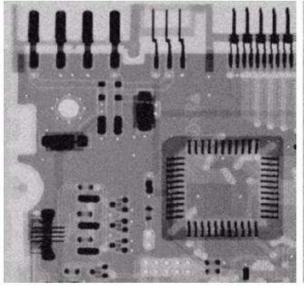


Image corrupted by AWGN

Image obtained using a 3x3 arithmetic mean filter



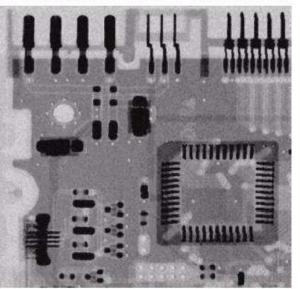


Image obtained using a 3x3 geometric mean filter

Harmonic and Contraharmonic Filters

Harmonic mean filter

$$\hat{f}(x,y) = \frac{mn}{\sum_{(s,t)\in S_{xy}} \frac{1}{g(s,t)}}$$

Works well for salt noise but fails for pepper noise

Contraharmonic mean filter

$$\hat{f}(x,y) = \frac{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q}}$$

mn = size of moving window

Positive *Q* is suitable for eliminating pepper noise. Negative *Q* is suitable for eliminating salt noise.

Q = the filter order

For Q = 0, the filter reduces to an arithmetic mean filter. For Q = -1, the filter reduces to a harmonic mean filter.

Contraharmonic Filters: Example

Image corrupted by pepper noise with prob. = 0.1

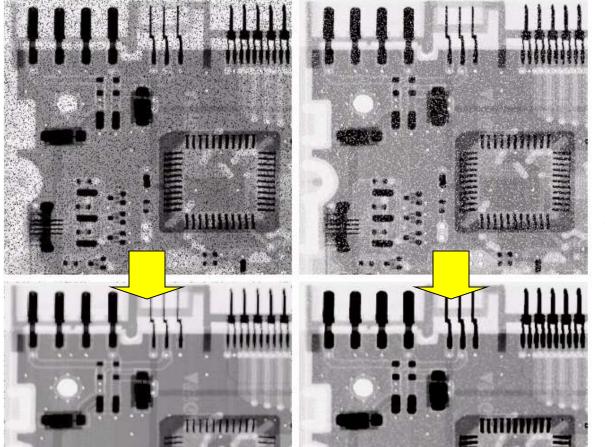


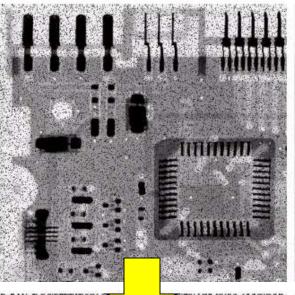
Image corrupted by salt noise with prob. = 0.1

Image obtained using a 3x3 contraharmonic mean filter With Q = 1.5

Image obtained using a 3x3 contraharmonic mean filter With Q=-1.5

Contraharmonic Filters: Incorrect Use Example

Image corrupted by pepper noise with prob. = 0.1



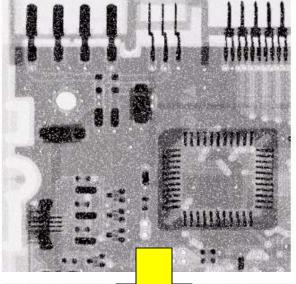
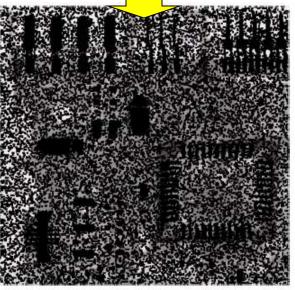


Image corrupted by salt noise with prob. = 0.1

Image obtained using a 3x3 contraharmonic mean filter With Q=-1.5



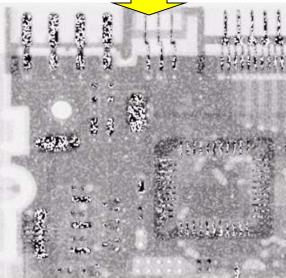
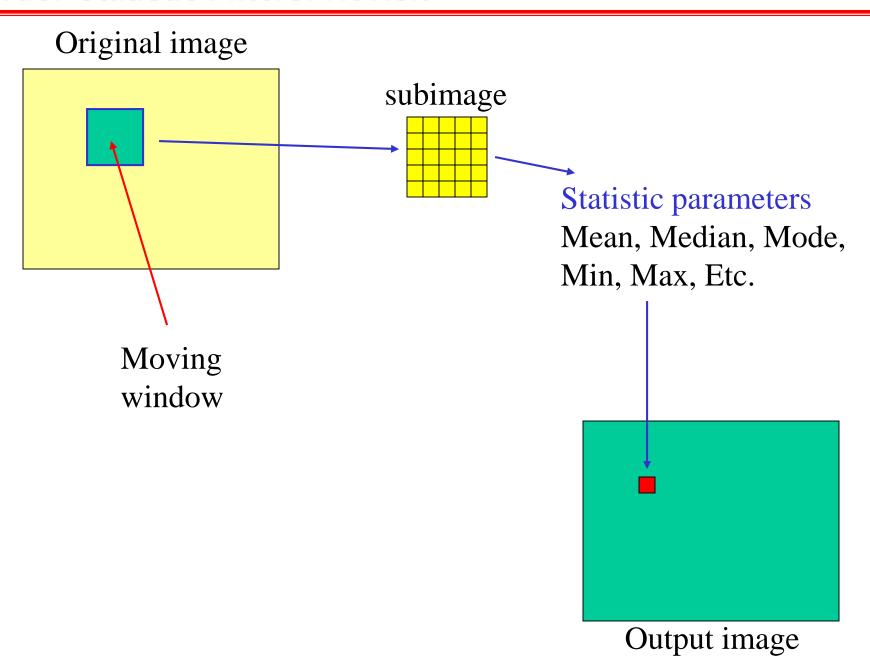


Image obtained using a 3x3 contraharmonic mean filter With Q=1.5

Order-Statistic Filters: Revisit



Order-Statistics Filters

Median filter

$$\hat{f}(x, y) = \underset{(s,t) \in S_{xy}}{\text{median}} \left\{ g(s, t) \right\}$$

Max filter

$$\hat{f}(x,y) = \max_{(s,t) \in S_{xy}} \{g(s,t)\}$$
 Reduce "dark" noise (pepper noise)

(pepper noise)

Min filter

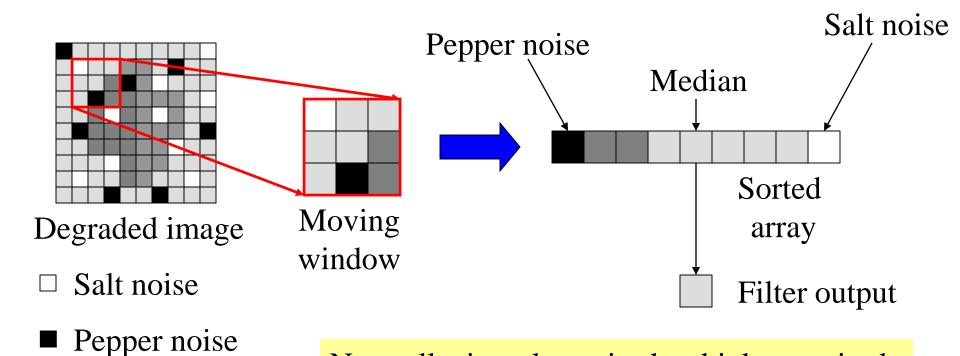
$$\hat{f}(x,y) = \min_{(s,t) \in S_{xy}} \{g(s,t)\}$$
 Reduce "bright" noise (salt noise)

Midpoint filter

$$\hat{f}(x,y) = \frac{1}{2} \left(\max_{(s,t) \in S_{xy}} \{ g(s,t) \} + \min_{(s,t) \in S_{xy}} \{ g(s,t) \} \right)$$

Median Filter: How it works

A median filter is good for removing impulse, isolated noise

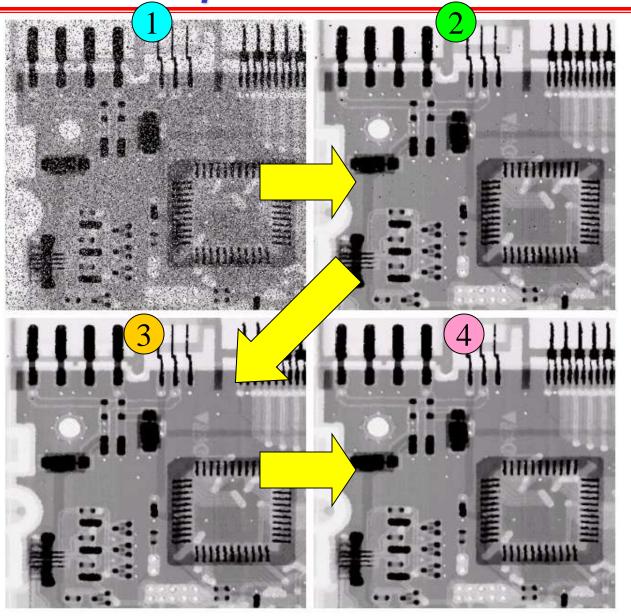


Normally, impulse noise has high magnitude and is isolated. When we sort pixels in the moving window, noise pixels are usually at the ends of the array.

Therefore, it's rare that the noise pixel will be a median value.

Median Filter : Example

Image corrupted by salt-and-pepper noise with $p_a=p_b=0.1$



Images obtained using a 3x3 median filter (Mages From Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Max and Min Filters: Example

Image corrupted by pepper noise with prob. = 0.1

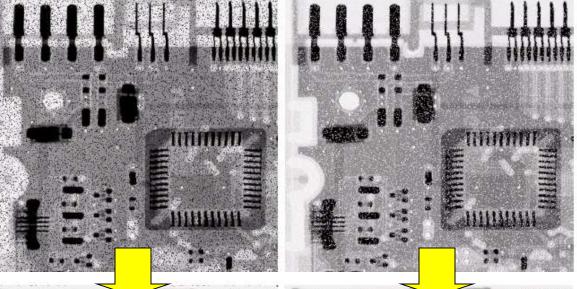
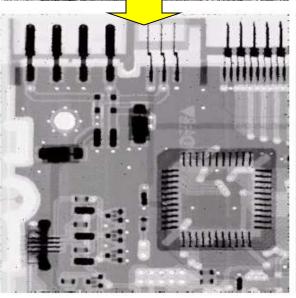


Image corrupted by salt noise with prob. = 0.1

Image obtained using a 3x3 max filter



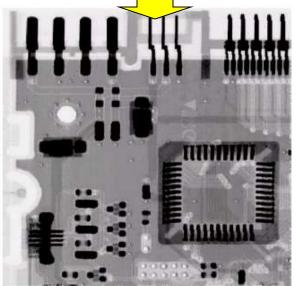


Image obtained using a 3x3 min filter

Alpha-trimmed Mean Filter

Formula:

$$\hat{f}(x,y) = \frac{1}{mn - d} \sum_{(s,t) \in S_{xy}} g_r(s,t)$$

where $g_r(s,t)$ represent the remaining mn-d pixels after removing the d/2 highest and d/2 lowest values of g(s,t).

This filter is useful in situations involving multiple types of noise such as a combination of salt-and-pepper and Gaussian noise.

Alpha-trimmed Mean Filter: Example

Image corrupted by additive uniform noise

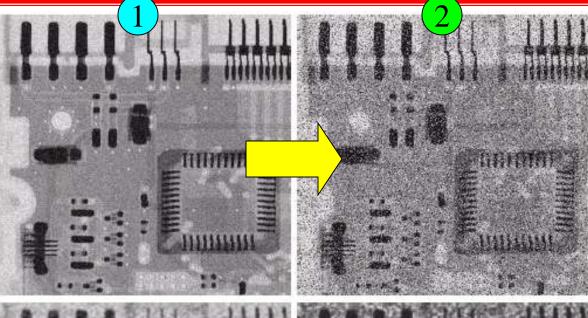
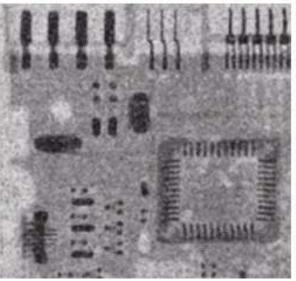


Image additionally corrupted by additive salt-and-pepper noise

Image 2
obtained
using a 5x5
arithmetic
mean filter



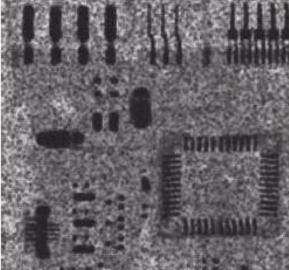


Image 2
obtained
using a 5x5
geometric
mean filter

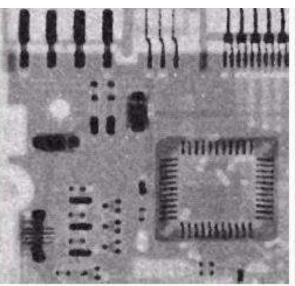
Alpha-trimmed Mean Filter: Example (cont.)

Image corrupted by additive uniform noise



Image additionally corrupted by additive salt-and-pepper noise

Image 2
obtained
using a 5x5
median filter



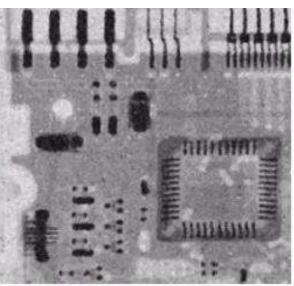
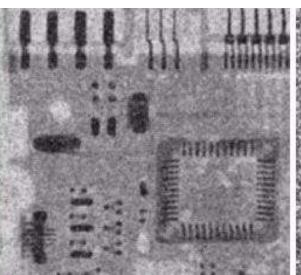


Image $\frac{2}{0}$ obtained using a 5x5 alphatrimmed mean filter with d = 5

Alpha-trimmed Mean Filter: Example (cont.)

Image obtained using a 5x5 arithmetic mean filter



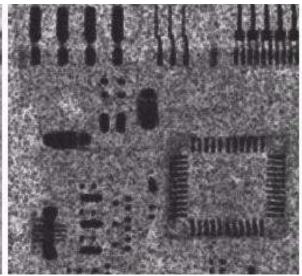
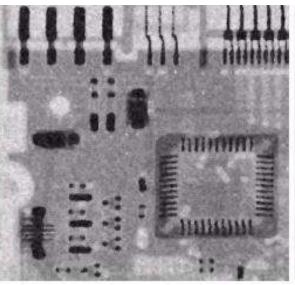


Image obtained using a 5x5 geometric mean filter

Image obtained using a 5x5 median filter



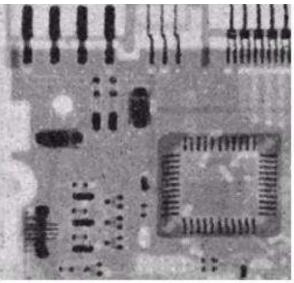


Image obtained using a 5x5 alphatrimmed mean filter with d = 5

Adaptive Filter

General concept:

- -Filter behavior depends on statistical characteristics of local areas inside *mxn* moving window
- More complex but superior performance compared with "fixed" filters

Statistical characteristics:

Local mean:(measure avg. intensity)

Noise variance:

$$m_L = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

$$\sigma_{\eta}^2$$

Local variance: (measure of contrast in that region)

$$\sigma_L^2 = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} (g(s,t) - m_L)^2$$

Adaptive, Local Noise Reduction Filter

Purpose: want to preserve edges

Concept:

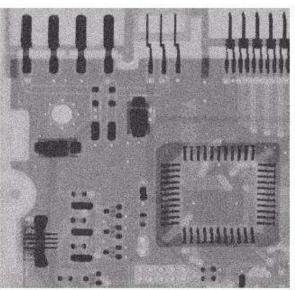
- 1. If σ_{η}^{2} is zero, \rightarrow No noise the filter should return g(x,y) because g(x,y) = f(x,y)
- 2. If σ_L^2 is high relative to σ_{η}^2 , \rightarrow Edges (should be preserved), the filter should return the value close to g(x,y)
- 3. If $\sigma_L^2 = \sigma_\eta^2$, \rightarrow Areas inside objects the filter should return the arithmetic mean value m_L

Formula:

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} (g(x,y) - m_L)$$

Adaptive Noise Reduction Filter: Example

Image corrupted by additive Gaussian noise with zero mean and $\sigma^2=1000$



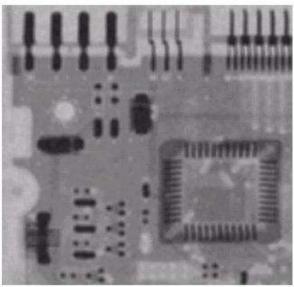
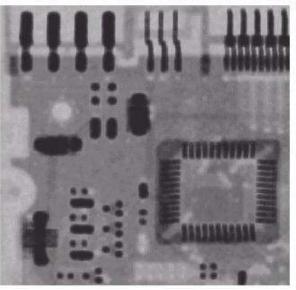


Image obtained using a 7x7 arithmetic mean filter

Image obtained using a 7x7 geometric mean filter



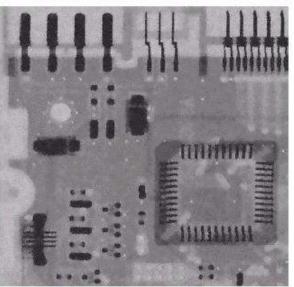


Image obtained using a 7x7 adaptive noise reduction filter

Adaptive Median Filter

Purpose: want to remove impulse noise while preserving edges

Algorithm: Level A:
$$A1 = z_{\text{median}} - z_{\text{min}}$$

$$A2 = z_{\text{median}} - z_{\text{max}}$$
If A1 > 0 and A2 < 0, goto level B

Else increase window size

If window size <= S_{max} repeat level A

Else return z_{xy}

Level B:
$$B1 = z_{\text{xy}} - z_{\text{min}}$$

$$B2 = z_{\text{xy}} - z_{\text{max}}$$
If B1 > 0 and B2 < 0, return z_{xy}
Else return z_{median}

where $z_{\min} = \min \sup$ gray level value in S_{xy} $z_{\max} = \max \limsup$ gray level value in S_{xy} $z_{\text{median}} = \text{median of gray levels in } S_{xy}$ $z_{\text{xy}} = \text{gray level value at pixel } (x,y)$ $S_{\max} = \max \limsup$ allowed size of S_{xy}

Adaptive Median Filter: How it works

Level A:
$$A1 = z_{\text{median}} - z_{\text{min}}$$

$$A2 = z_{\text{median}} - z_{\text{max}}$$
If $A1 > 0$ and $A2 < 0$, goto level B
Else \rightarrow Window is not big enough increase window size

If window size $<= S_{\text{max}}$ repeat level A
Else return z_{xy}

Level B: $\rightarrow z_{\text{median}}$ is not an impulse

$$B1 = z_{\text{xy}} - z_{\text{min}}$$

$$B2 = z_{\text{xy}} - z_{\text{max}}$$

$$B2 = z_{\text{xy}} - z_{\text{max}}$$
If B1 > 0 and B2 < 0, $\rightarrow z_{\text{xy}}$ is not an impulse or not $\rightarrow z_{\text{xy}}$ is not an impulse return z_{xy} $\rightarrow z_{\text{xy}}$ is not an impulse Else

return $z_{\text{median}} \rightarrow$ to remove impulse

Adaptive Median Filter: Example

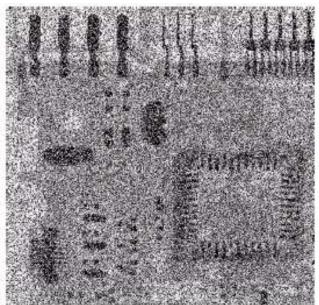


Image corrupted by salt-and-pepper noise with $p_a=p_b=0.25$

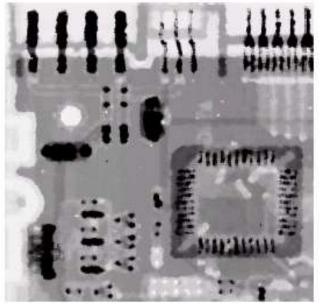


Image obtained using a 7x7 median filter

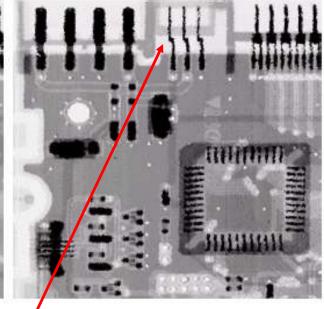


Image obtained using an adaptive median filter with

$$S_{\text{max}} = 7$$

More small details are preserved

Estimation of Degradation Model

Degradation model:

or
$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$
$$G(u, v) = F(u, v)H(u, v) + N(u, v)$$

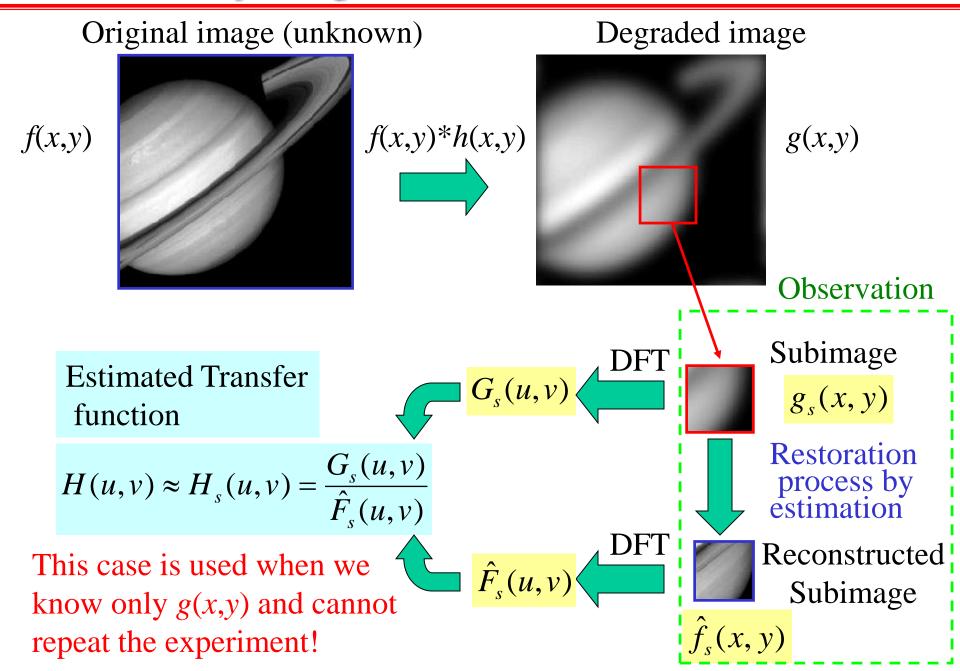
Purpose: to estimate h(x,y) or H(u,v)

Why? If we know exactly h(x,y), regardless of noise, we can do deconvolution to get f(x,y) back from g(x,y).

Methods:

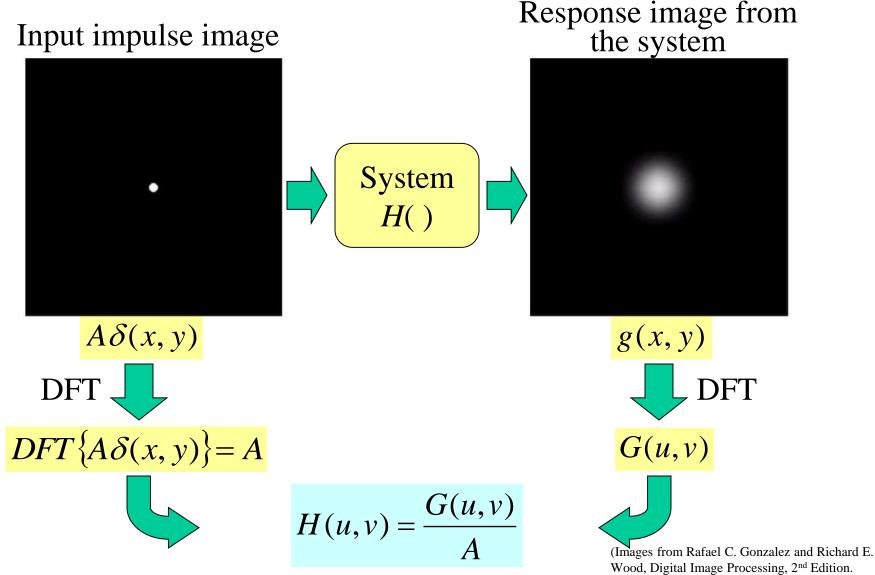
- 1. Estimation by Image Observation
- 2. Estimation by Experiment
- 3. Estimation by Modeling

Estimation by Image Observation



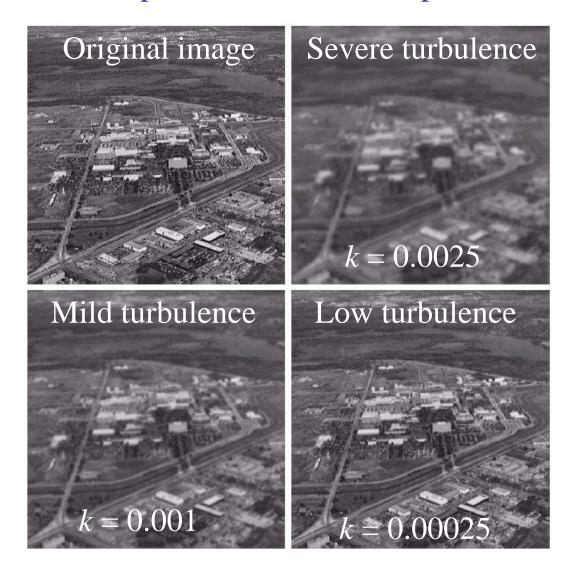
Estimation by Experiment

Used when we have the same equipment set up and can repeat the experiment.



Estimation by Modeling

Used when we know physical mechanism underlying the image formation process that can be expressed mathematically.



Example:

Atmospheric Turbulence model

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

Estimation by Modeling: Motion Blurring

Assume that camera velocity is $(x_0(t), y_0(t))$

The blurred image is obtained by

$$g(x, y) = \int_{0}^{T} f(x + x_0(t), y + y_0(t))dt$$

where T =exposure time.

$$G(u,v) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} g(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$= \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{T} f(x+x_0(t),y+y_0(t))dt e^{-j2\pi(ux+vy)}dxdy$$

$$= \int_{0}^{T} \int_{-\infty-\infty}^{\infty} f(x+x_0(t),y+y_0(t))e^{-j2\pi(ux+vy)}dxdy dt$$

Estimation by Modeling: Motion Blurring (cont.)

$$G(u,v) = \int_{0}^{T} \left[\int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x+x_0(t), y+y_0(t)) e^{-j2\pi(ux+vy)} dx dy \right] dt$$

$$= \int_{0}^{T} \left[F(u,v) e^{-j2\pi(ux_0(t)+vy_0(t))} \right] dt$$

$$= F(u,v) \int_{0}^{T} e^{-j2\pi(ux_0(t)+vy_0(t))} dt$$

Then we get, the motion blurring transfer function:

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} dt$$

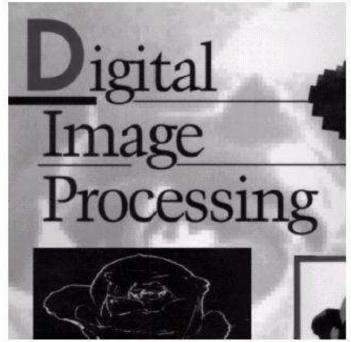
For constant motion $(x_0(t), y_0(t)) = (at, bt)$

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ua+vb)} dt = \frac{T}{\pi(ua+vb)} \sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$

Motion Blurring Example

For constant motion

$$H(u,v) = \frac{T}{\pi(ua+vb)}\sin(\pi(ua+vb))e^{-j\pi(ua+vb)}$$



Original image

Motion blurred image a = b = 0.1, T = 1

Inverse Filter

From degradation model:

$$G(u,v) = F(u,v)H(u,v) + N(u,v)$$

after we obtain H(u,v), we can estimate F(u,v) by the inverse filter:

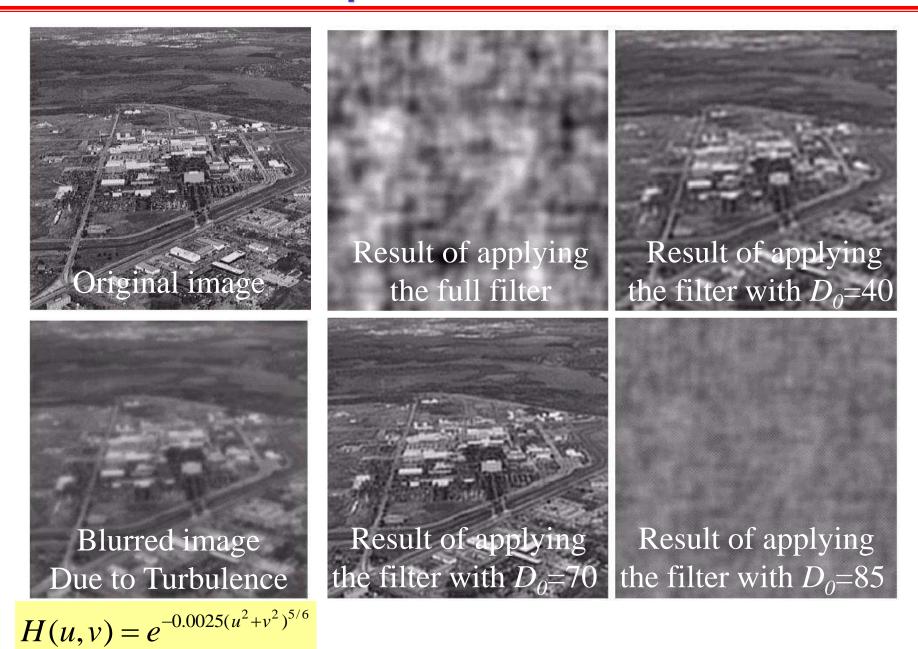
$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Noise is enhanced \checkmark when H(u,v) is small.

To avoid the side effect of enhancing noise, we can apply this formulation to freq. component (u,v) with in a radius D_0 from the center of H(u,v).

In practical, the inverse filter is not Popularly used.

Inverse Filter: Example



Wiener Filter: Minimum Mean Square Error Filter

Objective: optimize mean square error: $e^2 = E((f - \hat{f})^2)$

Wiener Filter Formula:

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)S_f(u,v)}{S_f(u,v)|H(u,v)|^2 + S_\eta(u,v)} \right] G(u,v)$$

$$= \left[\frac{H^*(u,v)}{|H(u,v)|^2 + S_\eta(u,v)/S_f(u,v)} \right] G(u,v)$$

$$= \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_\eta(u,v)/S_f(u,v)} \right] G(u,v)$$

where

H(u,v) = Degradation function $S_{\eta}(u,v)$ = Power spectrum of noise $S_{t}(u,v)$ = Power spectrum of the undegraded image

Approximation of Wiener Filter

Wiener Filter Formula:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v) / S_f(u,v)}\right] G(u,v)$$

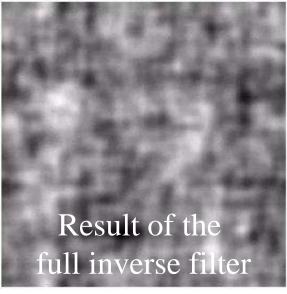
Difficult to estimate

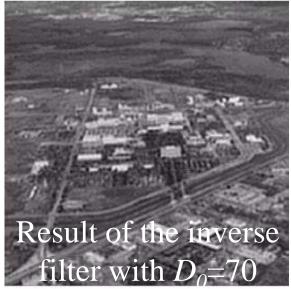
Approximated Formula:

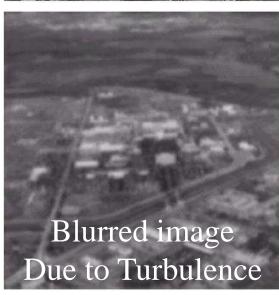
$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{\left|H(u,v)\right|^2}{\left|H(u,v)\right|^2 + K}\right] G(u,v)$$

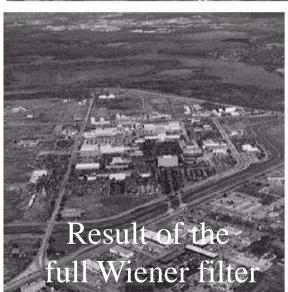
Practically, *K* is chosen manually to obtained the best visual result!

Wiener Filter: Example







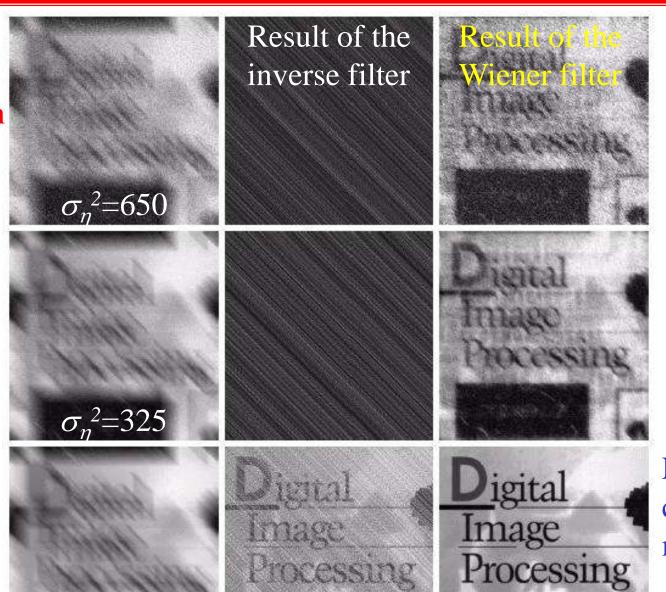


Wiener Filter: Example (cont.)

Example: Wiener Filter and Motion Blurring

 $\sigma_n^2=130$

Image degraded by motion blur + AWGN



Note: *K* is chosen manually

om Rafac¹ C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Constrained Least Squares Filter

Degradation model:

Written in a matrix form

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$

$$g = Hf + \eta$$

Objective: to find the minimum of a criterion function

$$C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\nabla^2 f(x, y) \right]^2$$

Subject to the constraint

$$\left\|\mathbf{g} - \mathbf{H}\hat{\mathbf{f}}\right\|^2 = \left\|\mathbf{\eta}\right\|^2$$

where $\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$

We get a constrained least square filter

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

where

$$P(u,v) = \text{Fourier transform of } p(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Constrained Least Squares Filter: Example

Constrained least square filter

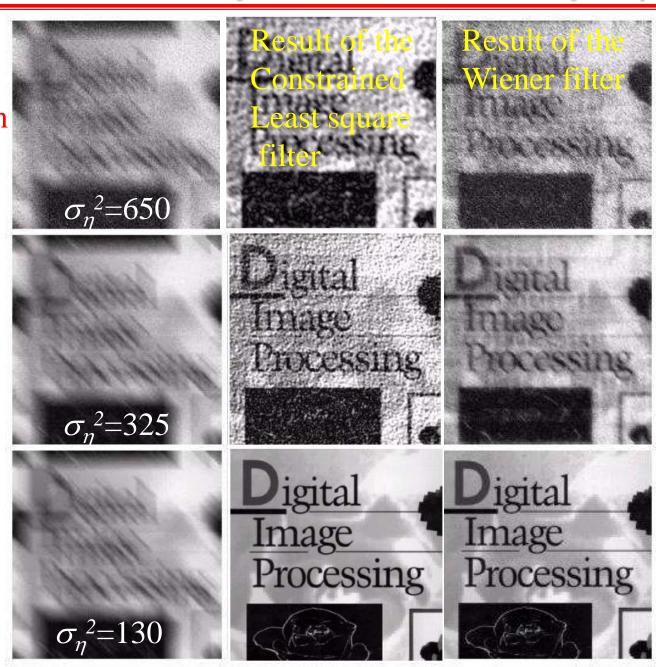
$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

 γ is adaptively adjusted to achieve the best result.

Results from the previous slide obtained from the constrained least square filter

Constrained Least Squares Filter: Example (cont.)

Image degraded by motion blur + AWGN



Constrained Least Squares Filter: Adjusting y

Define
$$\mathbf{r} = \mathbf{g} - \mathbf{H}\hat{\mathbf{f}}$$
 It can be shown that $\phi(\gamma) = \mathbf{r}^T \mathbf{r} = \|\mathbf{r}\|^2$

$$\phi(\gamma) = \mathbf{r}^T \mathbf{r} = \|\mathbf{r}\|^2$$

We want to adjust gamma so that

$$\|\mathbf{r}\|^2 = \|\mathbf{\eta}\|^2 \pm a \longrightarrow \mathbf{1}$$

Specify an initial value of γ

where a = accuracy factor

- 2. Compute $\|\mathbf{r}\|^2$
- Stop if 1 is satisfied 3. Otherwise return step 2 after increasing γ if $\|\mathbf{r}\|^2 < \|\mathbf{\eta}\|^2 - a$

or decreasing
$$\gamma$$
 if $\|\mathbf{r}\|^2 > \|\mathbf{\eta}\|^2 + a$

Use the new value of γ to recompute

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

Constrained Least Squares Filter: Adjusting y (cont.)

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

$$R(u,v) = G(u,v) - H(u,v)\hat{F}(u,v)$$

$$\|\mathbf{r}\|^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} r^2(x, y)$$

$$m_{\eta} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \eta(x, y)$$

$$\sigma_{\eta}^{2} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\eta(x, y) - m_{\eta} \right]^{2}$$

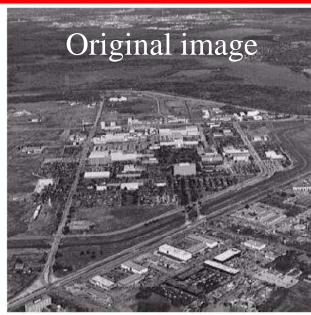
$$\left\|\mathbf{\eta}\right\|^2 = MN\left[\sigma_{\eta}^2 - m_{\eta}\right]$$

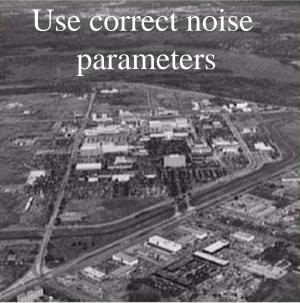
For computing $\|\mathbf{r}\|^2$

$$\|\mathbf{r}\|^2$$

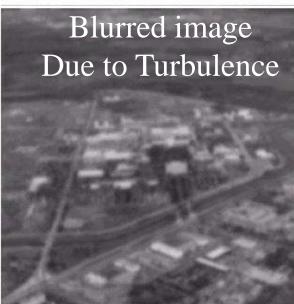
For computing $\|\mathbf{\eta}\|^2$

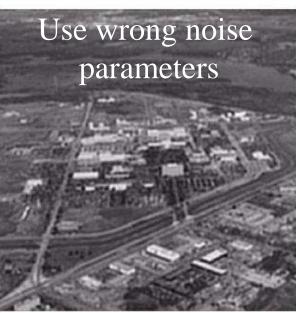
Constrained Least Squares Filter: Example





Correct parameters: Initial $\gamma = 10^{-5}$ Correction factor = 10^{-6} a = 0.25 $\sigma_{\eta}^{\ 2} = 10^{-5}$





Wrong noise parameter $\sigma_{\eta}^{\ 2} = 10^{-2}$

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Results obtained from constrained least square filters

Geometric Mean filter

This filter represents a family of filters combined into a single expression

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2}\right]^{\alpha} \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \beta \left[\frac{S_{\eta}(u,v)}{S_{f}(u,v)}\right]}\right]^{1-\alpha} G(u,v)$$

 $\alpha = 1 \rightarrow$ the inverse filter $\alpha = 0 \rightarrow$ the Parametric Wiener filter $\alpha = 0, \beta = 1 \rightarrow$ the standard Wiener filter $\beta = 1, \alpha < 0.5 \rightarrow$ More like the inverse filter $\beta = 1, \alpha > 0.5 \rightarrow$ More like the Wiener filter

Another name: the spectrum equalization filter

Geometric Transformation

These transformations are often called rubber-sheet transformations:

Printing an image on a rubber sheet and then stretch this sheet according to some predefine set of rules.

A geometric transformation consists of 2 basic operations:

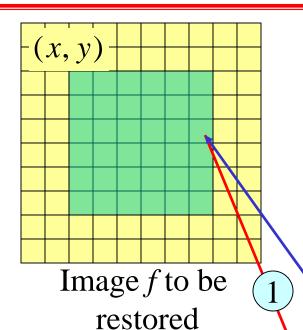
1. A spatial transformation:

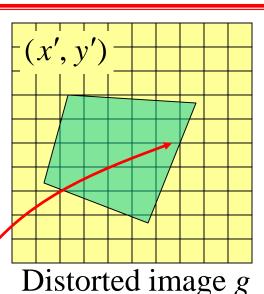
Define how pixels are to be rearranged in the spatially transformed image.

2. Gray level interpolation:

Assign gray level values to pixels in the spatially transformed image.

Geometric Transformation: Algorithm





- 1. Select coordinate (x,y) in f(t) be restored
- 2. Compute

$$x' = r(x, y)$$

$$y' = s(x, y)$$

3. Go to pixel (x', y') in a distorted image g

4. get pixel value at g(x', y')By gray level interpolation

5. store that value in pixel f(x,y)

Spatial Transformation

To map between pixel coordinate (x,y) of f and pixel coordinate (x',y') of g

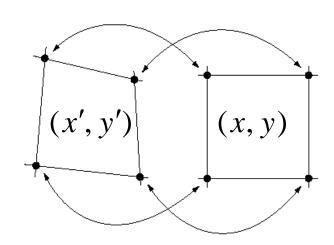
$$x' = r(x, y) \qquad y' = s(x, y)$$

For a bilinear transformation mapping between a pair of Quadrilateral regions

$$x' = r(x, y) = c_1 x + c_2 y + c_3 xy + c_4$$

$$y' = s(x, y) = c_5 x + c_6 y + c_7 xy + c_8$$

To obtain r(x,y) and s(x,y), we need to know 4 pairs of coordinates (x,y) and its corresponding (x',y') which are called tiepoints.

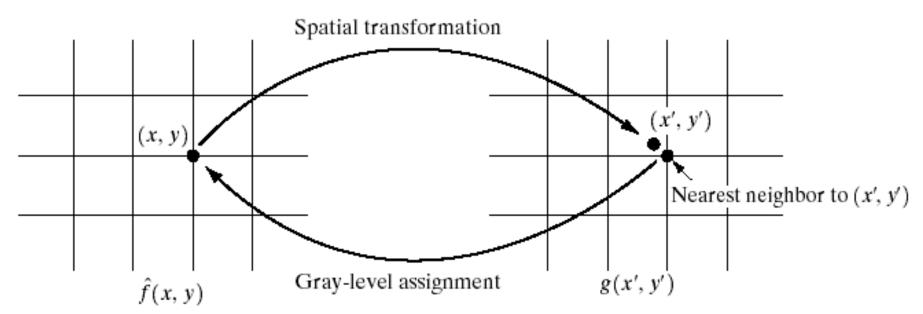


Gray Level Interpolation: Nearest Neighbor

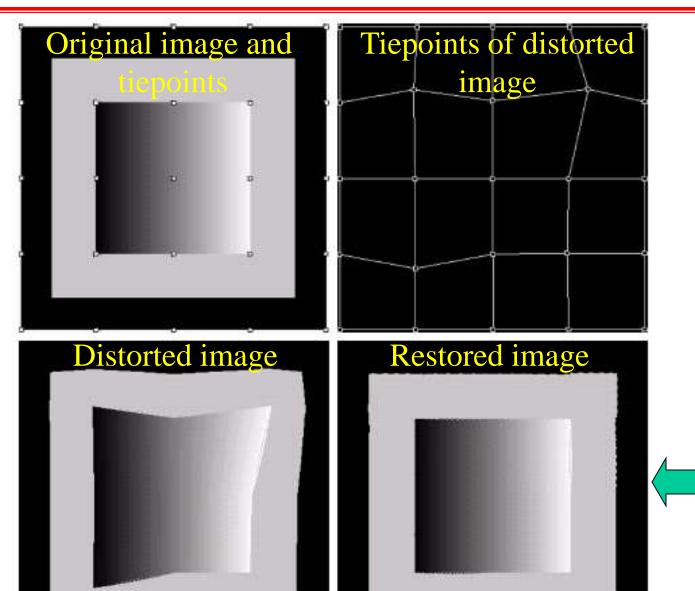
Since (x', y') may not be at an integer coordinate, we need to Interpolate the value of g(x', y')

Example interpolation methods that can be used:

- 1. Nearest neighbor selection
- 2. Bilinear interpolation
- 3. Bicubic interpolation



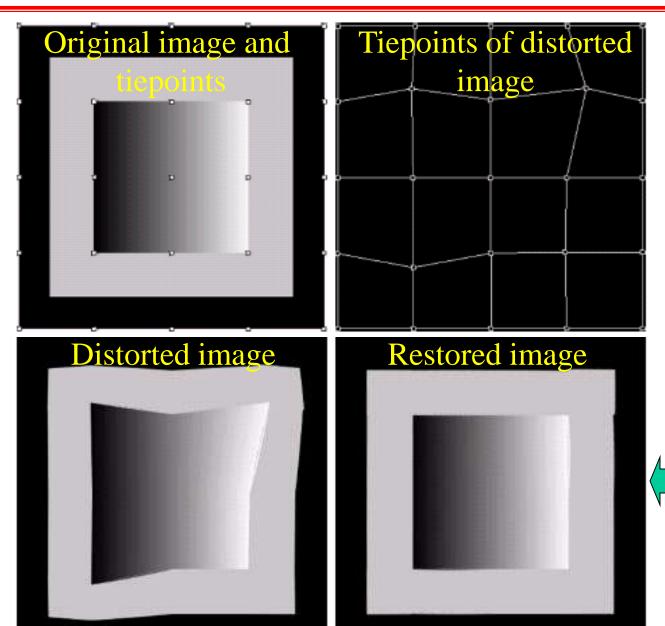
Geometric Distortion and Restoration Example



Use nearest neighbor intepolation

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

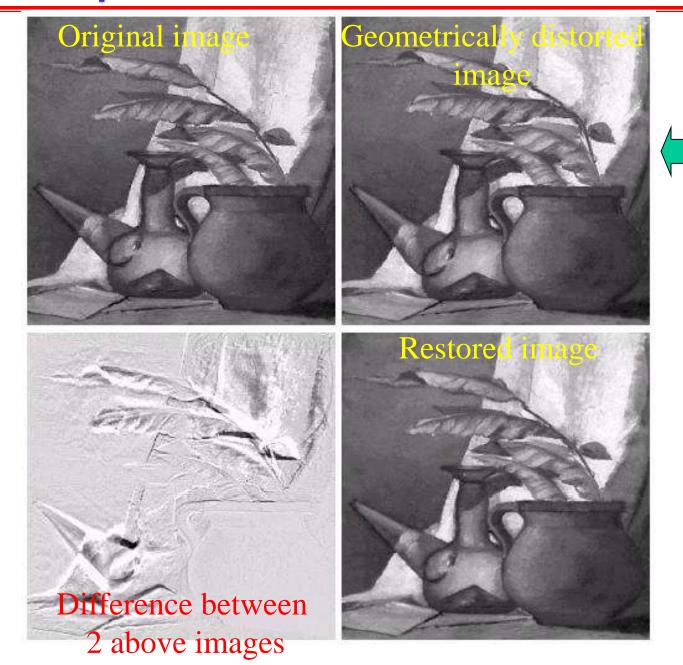
Geometric Distortion and Restoration Example (cont.)



Use bilinear intepolation

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.

Example: Geometric Restoration



Use the same Spatial Trans. as in the previous example

(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.